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Exploiting our earlier results [J. Math. Chem. 4 (1990) 295-353 and 13 (1993) 273-316] on 
the unitary group U(n) Racah-Wigner algebra, specifically designed for quantum chemical cal- 
culations of molecular electronic structure, and the related tensor operator formalism that 
enabled us to introduce spin-free orbital equivalents of the second quantization-like creation 
and annihilation operators as well as higher rank symmetric, antisymmetric and adjoint ten- 
sors, we consider the problem of U(n) basis partitioning that is required for group-function 
type approaches to the many-electron problem. Using the U(n) ~ U(nl) x U(n2), n = nl + n2 
adapted basis, we evaluate all required matrix elements of U(n) generators and their products 
that arise in one- and two-body components of non-relativistic electronic Hamiltonians. The 
formalism employed naturally leads to a segmented form of these matrix elements, with many 
of the segments being identical to those of the standard unitary group approach. Relationship 
with similar approaches described earlier is briefly pointed out. 

I. Introduction 

It  is well known that  the molecular  many-electron correlation problem quickly 
becomes unmanageable  as the electron number  a n d / o r  the dimension of  the one- 
electron model  space employed surpass certain rather modest  limits. Yet, various 
const i tut ing parts  of  such a molecular  system, be they atomic substituents or larger 
fragments ,  preserve a great deal of  individuality f rom one system to another.  In 
the quan tum chemical description based on molecular  orbital (MO) or valence 
bond  (VB) formalisms, the approximate  "addi t iv i ty"  of  the total  energy as well as 
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of various properties, when the molecule is assembled from chemically well charac- 
terized smaller fragments, will be reflected by an approximate separability of corre- 
sponding wave functions, particularly when we employ a one-electron basis that 
is well localized in the constituting parts of the total system. Although only a lim- 
ited localization may be achieved, particularly when using orthonormal MOs, the 
electrons in larger systems may be usefully partitioned into more or less well-sepa- 
rated groups or shells. The symmetry constraints and/or  significant energy separa- 
tion between such groups, if present, will also facilitate such a partitioning. 

The success of various empirical schemes that are based on approximate additiv- 
ity rules stimulated numerous attempts by molecular theorists to emulate this phe- 
nomenon in actual quantum chemical computations by building many-electron 
wave functions from those describing smaller molecular groups, fragments, aggre- 
gates or shells. Thus, the atoms in molecular method [1,2], the separated electron 
group method [3], the molecules in molecules idea [4] or the method of molecular 
fragments [5], as well as the semi-empirical and very successful diatomics in mole- 
cules approach [6], all exploit the same basic idea of system partitioning. 

Within the symmetric group spin-free approach, the idea of system partitioning 
was first explored by Matsen and Klein [7]. In the configuration interaction (CI) 
context, the advantages and feasibility of the group-function-type approach from 
the unitary (or general linear) group viewpoint were examined by Wormer and van 
der Avoird [8]. 

Later, Wormer [9] contemplated the feasibility of such an approach employing 
the unitary group formalism [10-21], while relying on graphical methods of spin 
algebras [22-24]. The same approach was employed by Paldus and Boyle [25] for a 
related partitioning problem which arises in the hole-particle formalism, provid- 
ing explicit expressions for all one- and two-electron segment values that are 
required in addition to those needed in the standard particle-only unitary group 
approach (UGA) [26]. 

More recently, UGA was applied to general system partitioning by Gould and 
Paldus [27], using the Green-Gould [28-30] formalism. In these papers a complete 
derivation of the U(n) generator matrix elements (MEs) in a basis adapted to the 
subgroup U(nl) × U(n2), n = nl + n2, was given. From the viewpoint of the Clif- 
ford algebra UGA (CAUGA), the system partitioning problem was subsequently 
studied by Paldus et al. [31 ]. 

In this paper we shall explore the UGA paritioning relying on earlier communi- 
cations in this series #1 [32,33], where we presented the U(n) tensor operator form- 
alism that is particularly suitable for the quantum chemical many-electron 
problem. The general formulation of the U(n) Racah-Wigner algebra for our pur- 
poses, together with the necessary explicit expressions for U(n) isoscalar factors 

#1 The preceding papers of this series, refs. [32] and [33], will be referred to in the following as Parts I 
and II, respectively. Likewise, we shall refer to eq. (x) or table x of Part I as eq. (I.x) or table I.x, 
respectively, and similarly for Part II. Note also the two misprints in table 1.2 pointed out in foot- 
note #1 of Part II. 
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or reduced Wigner coefficients and U(n) Racah coefficients for both standard and 
nonstandard or partitioned bases, was presented in Part I. In Part II these results 
were exploited in developing the tensor operator formalism that is necessary for 
efficient handling of one- and two-body MEs of molecular electronic Hamiltonians 
within the spin-adapted canonical Gel'fand-Tsetlin (GT) basis. In fact, the basic 
vector operators that we introduced in Part II represent spin-free or orbital analo- 
gues of spin orbital creation and annihilation operators of the standard second 
quantization formalism. Using these vector and contragredient vector (i.e., rank 
one tensor) operators, associated with a single box U(n) irreducible representation 
(irrep) #2 (16) - (0, 1) as elementary "building blocks", we constructed symme- 
try adapted second rank tensor operators, namely symmetric and antisymmetric 
tensors associated with irreps (20) - (1,0) and (12 .0) - (0, 2), respectively, and 
an adjoint tensor associated with the adjoint irrep (10 - 1 >. Using these results we 
were able to derive all the segment values required for the evaluation of one- and 
two-body MEs within the canonical UGA basis. In this paper we shall employ the 
same formalism, developed in Parts I and II, to obtain the necessary segment values 
for the evaluation of one- and two-body MEs in partitioned bases that are adapted 
to the chain U ( n ) ~  U ( n l ) x  U(n2) with n = nl +n2. Thus, following a brief 
review of our notation for the nonstandard or partitioned bases in section 2, we 
derive all necessary segment values for the evaluation of MEs of U(n) generators in 
section 3. In sections 4 and 5 we carry out similar derivations for MEs of spin-free 
creation and annihilation vector operators and for the two-body operators, respec- 
tively. A brief discussion and conclusions are then the subject of the last section 
(section 6). 

2. Par t i t ioning formal i sm 

We assume that the orbital space Vn may be partitioned into a direct sum of r 
subspaces Vn,, so that 

r r 

v. = G v.,, Z n , _ - . ,  (1) 
i=1  i=1  

and that there exists an orthonormal one-electron basis set Oi = {I J)}" 1,2, ,n, for 
_ J =  : . . .  

each subspace V~,. Hence, for the total space V~, the relevant basis set f2 is given by 
a disjoint union of Oi assuming an arbitrary but fixed ordering of subspaces V,,,. 
To avoid any ambiguity when dealing with basis ~ for V,, it is convenient to 
employ a consecutive labeling of one-electron states. We thus relabel our orthonor- 
mal orbitals l J) as follows Y2i = {IJ)}j=r,+l,rt+2,...rt+nf' where i-i ri = ~ j = l  nj  = 

r i -1  Jr- h i -1  and rl = 0, so that Y2 = {[J)}j=l,2,...=. We then associate the orbltal uni- 
tary group U(ni) with each subspace Vn, and U(n) with the total space Vn. For an 

#2Recall that a U(n) two column irrep (2albO) -- (2"lb0 ~-(a+b)> is labeled as (a, b) in accordance 
with Paldus ABC tableau labeling [10]. 
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N-electron system, we wish to employ the N-electron states that are symmetry 
adapted to the chain 

U(n) = U(nl) × u(n2) × ... × U(nr). (2) 

Clearly, there arc many possible imbeddings of the subgroup U(nl)x U(n2) 
× ... × U(nr) in U(n), so that we have to choose a suitable "coupling schcmc", simi- 
larly as in thc standard angular (or spin) coupling problem. A convcnicnt rccursivc 
schcmc that builds on a simplc r = 2 case was formulated and cxploited by Gould 
[27b]. With such a rccursivc coupling, multiplicity problems arc avoided, as long as 
wc kccp irrep labels arising through intermediate couplings. 

In this paper, wc shall considcr thc simplest case when r = 2, i.e., the partition- 
ing of a system into two subsystems. Throughout this paper, we shall designatc 
U(nl) orbitals by the lower casc Icttcrs of the Grcck alphabet a,/3, ~,, etc., while 
those associated with U(n2) by the lower case letters of the Latin alphabet i,j, k, ctc. 
Wc shall also employ Paldus' labeling of U(n) irrcps, designating A- (a, b), 
Ai --- (ai, bi),A' i =-- (~,b~),wherei = 1,2,etc. 

The basis vectors adapted to the chain U(n) ~ U(nl ) × U(n2) will then be desig- 
nated as 

A W1 W2 = (a,b) WI W2 ' (3) 

following the notation used in Part I (see also eqs. (53,54) ofref. [31]), and implying 
that the state belongs to the irrep A of U(n) given as an outer direct product of GT 
basis vectors IAi W~.) = I ~j ) ofU(ni), i = 1,2 (in the text we use linearized notation 
writing the irrep and Weyl tableau symbols in the same row). Since we consider at 
most two-column irreps and only two subsystems, no multiplicity problems arise 
and the notation ofeq. (3) is unambiguous. 

We have shown in Part I that the partitioned basis (3) may be expressed in terms 
of canonical U(n) basis as follows [cf., eq. 0.59)]: 

[(a,b) ( a l , b l ) ( a 2 , b 2 ) ) = ~ w  I(a,b) l ( ( a , b )  (a,b) (al,bl) (a2,b2)) 
w1 w2 w w w~ w2 ' 

(4) 
defining the transformation coefficients from the partitioned basis to the U(n) GT 
basis and vice versa. We have also shown that the transformation coefficients in 
eq. (4) can be factorized into a simple product of transformation isoscalar factors, 
referred to as It factors for short, and all It factors required for the two-column 
irreps were given in table 1.2 #3. These results are extensively employed in the pre- 
sent paper. 

#3Note two misprints in table 1.2 (cf footnote #1 of Part II): the factor (b + e + t + 2) appearing in 
the numerator of type C It (or L) factor should read (b - e + t + 2) and, similarly, the factor (e + 1) 
in the denominator for the type D L (I,) factor equals (e + 2). 
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Clearly, MEs of U(n) operators that involve indices of only one kind, in parti- 
tioned basis (3), reduce to MEs of corresponding subgroup operators in the respec- 
tive GT basis. For example for E ~  we simply get 

(5) 

and similarly for MEs of Eij, E,~E,,,y, EijEkt, etc. Thus, in the following, we only 
have to consider M Es of operators that contain both kinds of labels involving U(nl) 
as well as U(n:). 

3. Matrix elements of  generators 

We consider MEs of E~i, which is hermitian conjugate of Ei~. Since E~i is a vec- 
tor operator of U(nl) and a contragredient vector operator of U(n2), 

[Ee.r,E,~i ] = ~Se,.rEoi (o~,/3,'), = 1 ,2 , . . . , n , ) ,  (6) 

[E:k, E i] = -,SijE k 

its MEs may be expressed as 

(E~i) --- 

( i , j ,k = nl + 1,nl + 2 , . . . , n l  +n2 = n), (7) 

W2 

I1 11 ,01,1   7 
= ~'1 )~ A,~2 WI ct W~ W~ i W2 , (8) 

where the first factor on the right-hand side is a reduced matrix element (RME) of 
U(n) generator in the partitioned basis depending on the irreps of U(n), U(n:) and 
U(n2). The second and third factors are the Clebsch-Gordan (CG) coefficients for 
vector operators. Since we employ scaled CG coefficients rather than unsealed 
ones, as indicated by the superscript (s), the RME in eq. (8) is in fact a scaled RME. 
We have shown in Part I that scaled CG coefficients are products of scaled isosca- 
lar factors (or reduced Wigner coefficients) and all relevant isoscalar factors for 
vector operators may be found in table II. 1. Hence, the only unknown term in eq. 
(8) is the RME. 

There are four independent RMEs corresponding to )~] = (al,b: + 1) or 
(al + 1,bx - 1) and )~ = (a2,b2 - 1) or (a2 - 1,b2 + 1). To find these RMEs, we 
express MEs of E,,,,~+l in a partitioned basis in terms of MEs in the GT basis, using 
the transformation of eq. (4). We first choose ~'1 = (al,b: + 1) and 
A~ = (a2, b2 - 1) and let the orbitals n: and (nl + 1) be singly occupied in the first 
column of W~ and W2, respectively. Moreover, we assume that the tableaux W2 
and W~ contain a2 doubly occupied orbitals. We can thus schematically represent 
these states as follows: 
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where rl = nl + 1, ra = nl + 2, etc. For simplicity's sake we assume the shaded 
parts of Wa and W~ to be identical and filled with doubly occupied orbitals, whose 
labels are greater than the maximum label of singly occupied orbitals. Substituting 
now these states, eq. (9), into eq. (8) and applying eq. (4), we can rewrite the left- 
hand side ofeq. (8) as follows: 

Note that in eq. (10) the subtableaux of W r and W obtained by deleting boxes 
labelled by nl and (nl + 1) must be identical lest the MEs of En~,n~+l vanish. This 
means that the position of nl in IV' must be identical to that of(n1 + 1) in W. Under  
these conditions, the ME ofEnt,n~+l is equal to 1 in view of the single occupancy of 
the orbitals involved. Hence, the right-hand side ofeq. (10) is given by a sum of pro- 
ducts of two transformation coefficients. We recall here that these transformation 
coefficients may be expressed as products of It factors and the It factors for doubly 
occupied orbitals are simply equal to 1. Consequently, the doubly occupied parts 
of W2 and W~, eq. (9), make no contribution to the transformation coefficients and 
we can write 

where ~ = a - a2 and 
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represent singly occupied parts of ~,V2 and W~in eq. (9), respectively. The 1~ and 
W' that result by adding the boxes of W2 and W~ to W1 and W~, respectively, must 
have identical subtableaux for the levels smaller than nl and larger than (nl + 1). 
This means that W and I.V ~ differ in only one box that contains nl in Wr and (nl + 1) 
in 1~,', i.e., 

I (h,b) )_= , I (~b , ) )  ~ (13) 

Thus the sum in eq. (11) reduces to the sum over subtableaux w and o3. In view of 
the n-independence of isoscalar factors, the label nl in lzV' may be replaced by 
(nx + 1) --- rl if the W~ is simultaneously replaced by 

(al,bl + 1) \ 

This implies that eq. (11) can be rewritten as 

(En,,n,+l)l = ((gt, b ) ( a l ,b~?  1) 

(14) 

(O, b2 - 1) I (al,bl) (0, b2) / 
" 

(15) 

If  we introduce a basis 1(0, 1)rl), we may interpret the bra and the ket states in 
(15) as arising from two different coupling sequences involving the subgroup 
U(nl) x U(1) x U(n2 - 1). The bra is obtained by first coupling I(al, bl) W1 ) with 
[(0, 1) rl ) to a state of (al, b l + 1), followed by the coupling with ~(0, b2 - 1) I ~ ) ,  
while the ket results by first coupling t(0, 1) r l )  with I(0, b2 - 1) W~) to a state of 
(0, b2), followed by the coupling with [(al, bl) W1 ) to the final state. It thus follows 
that the right-hand side of eq. (11) or (15) is equal to a Racah coefficient #4 (recall 
the symmetry property (I. 137)) 

(En~,n,+l)l = U{(0, b2 - 1),(O, 1),(?t,b),(al,bl);(O, b2),(al,bl + 1)}. (16) 

This Racah coefficient is evaluated in the appendix so that we get 

#4 For footnote see next page. 
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(--1) a'+a2+a I(bl -b2 + b+ 2)(b2-bx + b)t'/2 
(E.,,.~+1)1 - 2 L bE(bl + 1) -j (17) 

On the other hand, using scaled isoscalar factors from table II. 1, we easily evaluate 
the right-hand side ofeq. (8) for a = nl, i = nl + 1, A1 = (a l ,  bl), etc., obtaining 

/ ,ab> rr rl  ab> ) (En,,n,+l)l = (al,bl + 1)(a2, b2-  1) E (al,bl)(a2,b2) 
( (al,bl) (0,1) (al,b, + l) l(~) 

× wl nl w~ 

x ((a2'b2-l) (0'1) (az'bz) n l + l  WE (18) 

The first CG coefficient is simply equal to a scaled isoscalar factor 

WI nl W~ = (al,bl) (0,0) (al,bl) = 1, 
(19) 

while the second CG coefficient is given by a product of isoscalar factors from the 
top level n to the level (nl + 1). Since the scaled isoscalar factors equal -1 for both 
doubly and singly occupied orbitals, we get 

'> / / W~ n l + l  W2 = (_l)a 2 (O, b2-  1 ) i ~  nl+l(O'l) (O, b2)l?V2 (s) 

b2-1( (0, b2 - r) (O,l)](O, b2-r+l ) )  (s) 
= ( - - 1 ) a 2 H  (O, b2-r-1)  (0,1) (0 ,bz-r)  r=l 

((O'O) (O'l) (O'l))(s) (--1)a2+b2-1 (20) 
× (0 ,0)  (0 ,0)  (0 ,0)  = 

~ W h e n  considering the partitioning of U(n) into the three subgroups U(nr), r = 3, an intermediate 
irrep is required in order to define uniquely the partitioned basis. Thus, either A1 of U(nl) and A2 of 
U(n2) are first coupled to an intermediate Ax2, which is then coupled with A3 of U(n3) to final A, or 
A23 resulting from the coupling of A2 and A3 is chosen as an intermediate irrep that is subsequently 
coupled with Al to obtain A. The relationship between the two coupling schemes is then given by 

A AI A2 "~3 ~ )~23 E U(,~I A2)~/~3 ; ,~12 ~23 ),~ AI ,~2 "~3 ~ )~12 " 
~/'1 W2 W3 " = A,2 w~ w2 w3/ 

Clearly, eq. (15) easily follows, since for Al = (al,bl),A2 = (0, l),A3 = (O, b2 - l) and A = (h,b) 
we have that Al2 = (al, bl + l) and A23 = (0, b2) in view of chosen occupancies. Using the relation- 
ship (I. 13 7) we can interchange Al and A3. 
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the last isoscalar factor being again equal to 1. Therefore, the first RME is given by 

( LLII (al bl + 1)(a2, b2 1) E , - ( a l ,  b l )  (a2, bz) 
=(_l)a,+b~+a+ll l ( b l - b 2 + b + 2 ) ( b 2 - b l + b ) ] l / 2  

b:(bl + 1) (21) 

The remaining three RMEs may be derived in a similar way. For example, to 
obtain the RME corresponding to the irreps ( d l , b ] )=  (al + l , b l -  1) and 
(a~, b~) -- (a2, b2 - 1), we choose W1, W2 and W~ as before, but IV[ as follows: 

W~ - 

i.e., the orbital nl is now singly occupied in the second column. Then, the left- 
hand side ofeq. (8) equals the Racah coefficient (cf., eq. (A. 13)) 

(En,,,,+I)2 = U{(0, b2 - 1),(O, 1),(?t,b),(al,bl);(O, b2),(al + 1 , b l -  1)} 

1 [ ( b l + b 2 - b ) ( b l + b z + b + 2 ) ]  1/2 
= 2 -bz-~l +-1) ' (23) 

and the right-hand side is given by 

(al + 1,bl - 1)(a2,b2- 1) E (al,bl)(a2, b2) " 

(24) 

The resulting RME is given in table 1. 

Table 1 
The RMEs of U(n) generators in a partitioned basis (3). 

(~,bl) (d2,b~) (a,b) (a,b) 
(~,b~)(£2,b~) E (al,bl)(a2,b2) I 

(al,bl +1) 

( a l + l , b l - l )  

(al ,bl+l) 

(al+l,bl  - 1) 

(a2,b2 - 1) 

(a2,b2 - 1) 

(a2- 1,b2+l) 

(a2- 1,b2+l) 

(-I)a2+l['(bl+b2-b+2)(bl+b2+b+4)'] 1 / 2 2  -(b~'+ I)(b2 +2) 

(-I) ''+'+' [(b,- b2 + b)(b: - bl + b + 2)] '/: 
2 [ (b~ + 1)(b2 + 2) ] 
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In order to calculate the RMEs for (4 ,  b~) = ( a 2  - 1, b 2  + 1), we must choose 
W2 in such a way that at least one singly occupied orbital appears in the second col- 
umn, i.e., 

W2 ' ' 

where now rl = nl + 1, rE = nl + 2 , . . . ,  and rk = nl + k with r2, • .  • ,  rk singly occu- 
pied in both WE and W~ and rl occupied in W2 but not in W~. Note that rl must be 
in the first column for W2 to be lexical, so that another singly occupied orbital 
(which is convenient to choose as having the maximal label, i.e. rk) must appear in 
the second column since only then the elimination of rl takes us from (a2, b2) to 
(a2 - 1, b2 + 1), i.e. we eliminate a box in the second column. Again, the shaded 
parts are identical and filled with (a2 - 1) doubly occupied orbitals, whose labels, 
for the sake of convenience, are assumed to be greater than rk. With these assump- 
tions, consider first the case (a'l, b~) = (al, bl + 1). We can again first eliminate all 
doubly occupied orbitals as we did in eq. (11). However, in contrast to eq. (11), it is 
now impossible to completely eliminate the second column. Instead, we get 

= Z ((h ,b)  (al,bl + 1) (Enl,nl+l)3 
re, re, _ W~ 

( ( h , b )  [ (al,bl) 
× W (Z,,b) Wl 

(0,b2 + 1) (&,b) \ 
rV' / 

(1, b2)WE_ / ' (26) 

where ~ = a - a2 + 1 and I~2 and I ~  are singly occupied subtableaux of W2 and 
W~, respectively. The largest orbital label in eq. (26) is now rk. We can thus express 
the transformation coefficients in eq. (26) in terms of products of It factors for 
U(rk) ~ U(rk -- 1) and the transformation coefficients for U(rk -- 1), so that the 
orbital label rk can be eliminated from the second column of ~?V2. Since the orbital rk 
may appear in the first or the second column of both I?V and I~', eq. (26) reduces 
to 

(En , ,n ,+ l )a=~i t ( (a l ,b l+ l )  (0, b E + l )  ( ~ , b ) )  
(al,bl + 1) (0, bE) (h ,b)-  "r 

/ ((al,bl)(l,b2) [ (5, b) ) 
× 

I ,  (al,b ) (0, b2 + 1) ( a , b ) -  

x v,u'Z( (h 'b)- 'r  (al,bl + I ) W ~  (0, bE)v~ (h,b)-'r)u, 
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where ( a , b ) - r = ( a , b - 1 )  when r = l  and ( a , b ) - r = ( a - l , b + l )  when 
r = 2 are the intermediate irreps. The V~ and V2 are obtained by removing a box 
labeled with rk from #g~ and 1~2, respectively, and, similarly, U' and U result from 
I2V' and W, respectively. Notice that the sums of products of two transformation 
coefficients over U and U ~ have the same form as those in eq. (11) and are thus 
equal to the Racah coefficients appearing on the right-hand side of eq. (16). We 
thus get 

Both the It factors (see table 1.2) and the Racah coefficients (eq. (A.7) and (17)) 
appearing in the above expression are known. On the other hand, the right-hand 
side ofeq. (8) is in this case easily found to be 

Comparing eqs. (28) and (29) we find the desired explicit form for the third RME 
in table 1. Finally, we find similarly the last RME for (a'l, hi) = (al + 1, bl - 1). All 
four possible RMEs are given in table 1. Thus, using eqs. (5) and (8) we may find 
any generator ME in the partitioned basis (3). 

It should be recalled that, similarly as in the standard UGA, the RMEs appear- 
ing in eq. (8) are associated with raising generators, since clearly a < i [cf., eqs. 
(11.39, 39 ~ and 39")]. In view of the hermitian property of U(n) generators, the MEs 
of Ei~ are easily found in an analogous way as those for the raising generators E,~i, 
eq. (8). The corresponding RMEs satisfy again the following symmetry proper- 
ties: 
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where the phase factors may be evaluated using eq. (I. 121) and the superscripts R 
and L imply raising and lowering generators, respectively (cf., eqs. (II.39', 391/)). 
Clearly, the last two RMEs in eq. (30) are associated with the subgroup chain 
U(n) ~ U(n2) x U(nl). Since the raising or lowering character is implied by the 
irreps involved, we can drop the superscripts R and L for RMEs. We can thus write 
in analogy to eq. (8) that 

wf 

× N 

,Ol, 
a W1 W2 i W~ " 

(8') 

4. MatrLx e l e m e n t s  o f  s p i n - f r e e  c r e a t i o n  and annihilation o p e r a t o r s  

We recall that the U(n) creation (C t) and annihilation (C) operators play the 
key role in our tensor algebra formalism. Their importance stems from the fact that 
the U(n) generators Ers and two-body operators ers;e~ may be expressed in terms 
of these operators in a similar way as in the standard spin orbital based second 
quantization formalism, namely (cf., Part II) 

2 

E ~ s = ~ C ~  C~, (31) 
~,~-1 

2 

ers;r'# --ErsEee -6esEre = Z C~e C~r C~sCff' (32) 
T,o'=I 

where r, s, r t, #, etc., are either U(nl) or U(n2) labels. Although we did not use eq. 
(31) in evaluating the generator MEs in the preceding section, eq. (32) is essential 
for the evaluation of two-body MEs. We thus have to derive first the MEs of opera- 
tors C t and C in a partitioned basis. 

We have seen in Part II that the MEs of Cfl and C~ operators in a canonical 
U(n) GT basis are given by scaled CG coefficients (cf., eqs. (I1.251 and 25")). Desig- 
nating the U(nl) and U(n2) counterparts of these operators as ~-~t, ~-~, ~7~i t and (7~, 
their MEs in standard GT bases of U(nl) and U(n2) are again given by scaled 
U(nl) and U(n2) CG coefficients. However the U(n) operators, say C~ or C~/t, do 
not represent unit tensor operators with respect to subgroups U(nl) and U(n2). 
Thus, while these U(n) operators induce a unique shift on U(n) irreps, i.e., 
A ~ A - T, this is not the case with respect to either U(nl) or U(n2). In other words, 
the resulting U(nl) and U(n2) irreps are not unique. Consequently, the MEs of 
U(n) operators Cfl or Crr, r = a or i, in the U(n) ~ U(nl) × W(n2) partitioned basis 
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are not simply given by CG coefficients. Nonetheless, since C~ t and C~/are vector 
operators with respect to U(nl) and U(n2), respectively, we can apply the Wigner- 
Eckart theorem and obtain 

h w; WI W2 

= 6~6:"~:~Sw;w~ h~h2 Ct h1,~2 W1 o~ W~ 

= 6~6~"2;~fiw;w2 A~A2 Ct ~ t  , (33) ~1h2 W~ W1 

where the shift p is given by £1 + p = £~ and where we used the fact that the CG 
coefficients for vector operators of U(nl) are equal to the U(nl) MEs of ~ t  (cf., eq. 
(II.25)). Similarly, we have that 

( I  h wf W, 

A -  ~- (0,1) (s) 
= 6~'S~i~'6w~w' hlh': C~ 

)q h2 W2 i W~ 

= 6°-r6~"~'6wIw' hl,k~ Ct hlh2 W~ ~//t W: ' (34) 

where h2 + r /= h~. Again, we replaced the U(n2) CG coefficient by the U(n2) ME 
of ~i  t. We emphasize that the U(n) and U(ni) vector operators are distinguished by 
a tilde. The first factor on the right-hand side of eq. (33) or (34) is the RME of a 
Ct-type operator in a partitioned basis that depends on the U(n), U(nl) and U(n2) 
irreps. These RMEs remain to be determined. The MEs of annihilation operators 
are obtained by hermitian conjugation ofeqs. (33) and (34). 

In view of eqs. (31), (33) and (34) we can express MEs of E,i in terms of MEs of 
C~ and C[ operators. Comparing the result with eq. (8), we get the relationship 
between the RMEs of E operators in eq. (8) and the RMEs of C t operators in eqs. 
(33)--(34): 

hlhl e hlh2 hlhl h hl hlhl 

hlhl hlh  hlh  h;h  

where the second equation is a consequence of the symmetry properties of genera- 
tor RMEs, eq. (30). 
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The evaluation of the RMEs of C t operators is thus straightforward. We see 
from eqs. (33) and (34) that there are two kinds of C t RMEs. In the first case, 
required for the evaluation of MEs of U(n2) vector operators, eq. (34), the U(n0  
irreps are identical while the U(n2) irreps are different. In the second case, eq. (33), 
the U(n0 irreps are different while the U(n2) irreps are identical. Thus, the RMEs 
of the first kind may be obtained by considering the MEs of C~t n = nl + ha. If we 
choose for W~ a tableau that is obtained by adding one box labeled with orbital 
index n to the diagram W2 in which n is unoccupied (i.e., n is now singly occupied in 
W~), eq. (34) becomes 

/ / 
(A2 (0,1) A~'~(s) / A c t  A - - T )  (36) 

X "~2 ( 0 , 0 )  A2J = AaA~ /~1)~2 " 

On the other hand, the ME of ~ on the left-hand side ofeq. (36) can be given the 
following form using the basis transformation, eq. (4): 

w,w, W1 W~ W' W' W 

x - ~- , (37) 
W Wl  W2 

where W and W' are such that they yield identical tableaux at the U(n - 1) level, 
i.e., Wn ¢ W~ but Wn-1 = W~_ 1. The ME of C~ t is simply an isoscalar factor. 
Expressing, further, the first coefficient on the right-hand side of eq. (37) as a pro- 
duct of an It factor and a U(n - 1) transformation coefficient, we get 

( C ~ n )  ---~/t /~1 "~2 /~ --  7" --  T ( 0 , 0 )  /~ --  T 

x : w - T  ' 

where the scaled isoscalar factor equals 1, the transformation coefficients are nor- 
malized (cf., eq. (I.68)) and tilde indicates the U(n - 1) level tableaux. This implies 
that the RMEs of the first kind are simply It factors, i.e. 

A --  T AS A i A 
A,A~ c t  = I, (39) 
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There are four RMEs of this kind that immediately follow from table 1.2. Their 
explicit values are given in table 2. 

The derivation of the RMEs of  the second kind is more laborious when we con- 
sider MEs of  special operators, say C~,,, since there are many levels between nl and 
n. However, a simple derivation may be carried out using eq. (35). Since the 
RMEs of  E operators (table 1) and the RMEs of C t operators of the first kind (eq. 
(39) and table 2) are known, we can solve eq. (35) to get the RMEs of  C t operators 
of  the second kind. The four RMEs of  this kind thus evaluated are given in table 
2. These results show (table 2) that the C t RMEs of the first and second kinds 
satisfy the following symmetry property: 

A,1A 2 C* . (40) ,~1/~2 /~2/V 1 C~ /~2,~1 

Finally, to gain a better insight into the nature of the above defined RMEs of  
C t operators we exploit the well-known fact that follows from the Wigner-Eckart 
theorem, namely that a ME of an irreducible tensor operator that is adapted to the 
group chain U(n) = U(nx x U(n2) may be expressed as a product of a U(n) 

Table 2 
The RMEs ofU(n) C t operators m a partitioned basis (3). 

A A1 A2 (a,b) Ct )' 

(a,b - 1) (al,bl) 

(a - 1 , b + l )  

( a , b - 1 )  (al,& - 1) 

(al - l , & + l )  

( a - l , b + l )  ( a l , b l - 1 )  

(al - 1,bl + 1 )  

(a2,b2 - 1) 

( a 2 -  1 , b 2 + l )  

(a2,b2 - 1) 

( a 2 - 1 , b 2 + l )  

(a2,b2) 

, [ (~2-b,  + ~)(~, +b2 + ~ +  2)] ''2 
" b2(b + 1) 

(-1)  °'+°~+°+~ F(b, + b 2 -  ~ ) (~ , -  ~2 + b + 2)1'/2 
2 L b2(b + 1) J 

1 F(~2 - ~, + b + 2)(b, + ~2 + ~ + 4)1"2 
[ (b2 + 2)(b + 1) J 

(--l)al+a+b22 I (bl -b2-~b)(blbl(b Al-~b2Arb~-l) 2)] I/2 

( -1)  ~=+< [(bl + b2 - b + 2)(b2 - bl + b)] 1/2 

2 k (bl + 2)(b + 1) J 

(-1)"= [(bl + b2 - b)(bl - bl + b + 2)] 1 / 2 2  bl(b + 1) 

(-1)  °'+° [ ( e ! -  ~2 + ~ + 2)(~, + ~2 + b + 4)]'/2 
2 [ (b~+2)(b+l) J 



340 )2. Li, J. Paldus / Unitary group tensor algebras. III 

RME, depending only on the U(n) irreps, and a general CG coefficient for the parti- 
tioned basis that is adapted to the U(n) ~ U(nl) × U(n2) chain. The CG (cou- 
pling) coefficient for the partitioned basis is then expressible as a product of an 
isoscalar factor for the group chain U(n) ~ U(nl) × U(n2) and of CG coefficients 
for the standard GT bases of U(nl) and U(n2), namely 

# v A \ 

/./,1 ]2,2 b'lb' 2 )~ 1.,,~2 / 
UI U2 V1V2 Wl W2 

#l~t2 /)1/)2 A1,~2 U1 VI Wl U2 V2 W2 ' 

where we now write ]~ ~ v )  as I u v )  (cf. also notation used in ref. [27]). Applying 

this result to MEs of, say, C//t and noting that we deal with a vector operator of 
irrep (0, 1) of U(n2) and a scalar (rank zero tensor) ofirrep (0, 0) of U(nl), we get 

A1 ~2 A - r 
~' w; w; w, w: 

( A A - r  ( 0 , 1 ) )  

 01>  41/ 
X W2 i W~ ' 

where the first factor on the right-hand side of eq. (41) is an RME of Ct that 
depends only on the U(n) irreps (cf. eq. (II.23)) and the second factor is an isoscalar 
factor for U(n) ~ U(nl) x U(n2). Comparing now eq. (41), and an analogous equa- 
tion for C~, with eqs. (34) and (33), respectively, and using eq. (II. 17), we immedi- 
ately find for the U(n) ~ U(nl) x U(n2) isoscalar factors that 

( A - r  (0,1) A )  
A1A2 (0,1)(0,0) A]A2 

= <'XllC~ll'X-r)-l(A'lllC)ll'Xl> ~,'1~,2 c)  /~1)~2 , (42) 

( A - - T  (0,1) A )  
A1A2 (0,0)(0,1))qA i 

II II = (NlCt l lA- r ) - l (A i l lC) l l 'X2)  A1AI C* )~1/~2 . (43) 
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Alternatively, we can derive the second relationship, eq. (43), by specializing eq. 
(41) for the case i = n, in which case the ME of C, °t on the left-hand side is given by 
the reduced element of C+, eq. (36). Evaluating subsequently the U(n2) CG coeffi- 
cient on the right-hand side of eq. (41) with the help of eqs. (II.9b, 12', 25 and 25') 
and table II.1, we find that it is equal to the inverse of the U(n/) RME, i.e. to 
(A~ II Ct IIA2) -1 , thus again obtaining eq. (43). 

Assuming the same phase convention as in Parts I and II, so that the C t RMEs 
are real, we immediately realize that they are identical with those obtained in Part 
II for the standard GT basis, since they are basis independent. Thus, recalling eq. 
(II.23), we can write 

((a,b)[ICt[[(a,b - 1)) = [b(a + b + 1)/(b + 1)] 1/2 , 

((a,b){tCtII(a - 1,b + 1)) = [a(b + 2)/(b + 1)] i/2 . (44) 

Thus, relying on table 2 and eq. (44), we can easily derive the explicit form of the 
isoscalar factors given by eqs. (42) and (43). We can also verify that these factors 
satisfy the following orthogonality properties: 

E 6aa,, (45) 
p,~p,2u~u2 ~I/d2 /"1//2 A1A2 /-/'l./Z2 //1//2 A1A2 

~, l~lt~z vlv2 A1A2 \ 1 2 ~ v  2 A1A2 
(46) 

5. Matrix element of two-body operators 

As explained in section 7 of Part II, it is both more appropriate and convenient 
to examine directly the MEs of two-body operators, eq. (32), rather than MEs of 
generator products. Not only do they represent the required quantities, but they are 
in fact easier to obtain than the MEs of generator products. Throughout this sec- 
tion we employ the following shorthand notation (er~;ee) for the required MEs, 
i.e. 

( ers;r,s, ) =- A W~ W ~ W1 ['1/2 

=_((a,b) (~,b~)w~ (d2'b2)] I W ~  ers;r,s,(a,b) (al,bt)w1 (az, bZ))Wz , (47) 

where r,s , / ,  s' are either U(ni) or U(n2) labels. As already noted in section 2 (cf. 
eq. (5)), the MEs of e~3;a,y and e/kjl are simply equal to their MEs in U(nl) and 
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U(n2) bases, respectively. Similarly, the MEs of e~a;/j = e/j;o~ = E ~ E i j  are given 
by the product of the corresponding U(nl) and U(n2) MEs, namely 

( h i  I I hi ) (  A2 E,y h2 ) (48) 
(e,~;/j) = 6,,,,,~.,6,',~..x2 W~ E,~ W1 W~ W2 " 

The nontrivial cases which have to be considered are thus: 

(1) ec~i;~.y = eB.y;,~i = E,~iE~.r , (49) 

(2) eil%ic~ = ej~;ik = Ejc~E~k , (50) 

(3) e~i;~j = el3j;od = Eaigflj , (51) 

(4) eaij~ = ej~;~i = EaiEj~ - tSo.Ea ~ . (52) 

The first two cases are associated with a one-electron charge transfer between the 
subsystems, case (3) with a two-electron charge transfer and case (4) with an inter- 
change of electrons between the subsystems. All the remaining cases may be 
obtained by hermitian conjugation. 

In the first case, eq. (49), we can express MEs of E~iE¢~. r in terms of MEs of Ec~i, 
for which eq. (8) applies, and U(nl) MEs of E~.r, i.e., 

E ( / ~  IV1 h2IEai]/~ I (  ]E~,~ I (ec, i;d7) ----- ' hl h2 hl hl 
v, w~ w~ vl w2 v~ w1 

( , II If / r hlh/ hlh2 W( 

/ h~ (0'1)] A2 /(s)/hl E/~ 7 
× w~ i w2 v~ 

h~h~ .~lh2 W~ i 

-,1 / 
wl 

W2 W( Ga;~'r 
hl) 

(53) 

where the shift a~ is fixed by the condition A1 + cr = A~. In the last eq. (53), the gen- 
erator RME (the first term) and the scaled U(n2) CG coefficient (the second term) 
are known. The last term represents a ME of G~;~7- ° ---- CffE~. r in the U(nl) basis (cf., 
eq. (11.83')). Similarly, for the case (2), eq. (50), we get an analogous expression 

( a  [IEll A ) ( a ~  (0 ,1)AI  )(s)(A~-G~./k A2)  (54) 
(e~j,~)= A,IA ~ A1A2 Wf a W1 W~ Wz ' 
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with the shift a given by A2 + a = A~. The MEs of G operators, eq. (II.83), were 
examined in detail in Part II. We recall that these MEs may be evaluated as simple 
products of segment values. Defining rl - max{a, 3, 3'}, r2 = max({a, fl, "/}\{rl}) 
and r3 = min{a, fl, 7}, this segmentation formalism involves in general: (1) A sim- 
ple product of segment values from the top level nl to level rl and from level r2 to 
level r3, where the segment values are given by scaled isoscalar factors of C t vector 
operators. (2) In the region between the levels rl and r2, two terms are generally 
required, each of which is a simple product of segment values. The character of 
these two terms depends on the nature of the two smaller labels, r2 and r3. If both r2 
and r 3 are of a creation type in G~,;~ = (?~E~.y, i.e., a and 3, these terms are given 
by the MEs of symmetric and antisymmetric tensors, and the corresponding seg- 
ment values are the isoscalar factors associated with these tensors. On the other 
hand, if one of the lables r2 and r3 is of a creation type and another one of an annihi- 
lation type in G~,;~-r = C ~ E ~ ,  e.g., a, 7 or 3, 7, then the adjoint tensors, namely 
the generators E and the operators N (cf. section 6 of Part II) come into play. Con- 
sequently, the required segment values in this region are then the E and N factors 
defined in Part II. (3) Finally, below the level r3, all the irreps in the bra and the ket 
must be identical lest the ME vanishes. We refer to Part II for the details and for 
the explicit values of required segment values. 

In the third case, eq. (51), involving two U(nl) labels and two U(n2) labels, the 
operators involved annihilates two boxes from W2 and creates two boxes in 14"1. 
Their MEs may thus be expressed in terms of the MEs of E~i and E~j, namely 

(e~,;~j) = ~ ( A . , ~ v ,  v2 IV[ A'I W~A'2E'~'A v11/_i u2)112 

× A V 1 v 2  E3J A w 1 w 2  " 

Applying eq. (8), we thus obtain a rather complex formula that contains two gen- 
erator RMEs, two U(nl) MEs involving C* operators and two U(n2) MEs of C-type 
operators. The sum over Vl and V2 leads then to an ME of a product of two ~t 
operators and another ME of a product of two C operators. Moreover, the sum 
over the intermediate irrep labels can be replaced by the sum over shift components 
a and p defined by ul -= A1 + a and v2 - A2 - p. We thus get 

(eai;3j)= /~A i E (/~1-t-O')(/~2--p) (/~1 +Cr)(A2--P)  E /~1/~2 

x w[ Wl w2 ' 

where the shift labels T and ~? are fixed by the conditions A1 + a + T = ),~ and 
,~2 - p - 77 = ,~. 



344 2(. Li, J. Paldus / Unitary group tensor algebras. III 

It thus remains to evaluate the MEs of U(nl) and U(n2) pairing operators. We 
showed in Part II that these MEs may be written in terms of MEs of symmetric and 
antisymmetric tensors. The required relationships (originally derived for U(n) 
but, of course, applicable to U(nl) and U(n2)) have the form (cf., eqs. (11.47-51)) 

((awb,) [ i t  ~t ( a , b - 2 ) )  ars((a,b-2) (0,2) (a,b)) (s) 
C q w = - ~  w [r~] w' ' (57) 

(a,b) 
W' c~tc~t (a-2 ,b+2))=W v~a~s( (a-2'b+2)W (0,2)[rs] 

(a, b) \ (s) 
Wt / 

(58) 

(a,b) 
W' J ) C~ c~lt 2t (a-l,b)w =(1+6~)1/22 +1 

x (  ( a -  l'b) W (l'O)[(a'b)) (s) [rs] W' 

- 1 b / f f ~ /  (a - l ,  b) (0 ,2)  
--ars6b,O ~ V ~ \ W [rs] 

(a, b) I (s) 
W t 

(59) 

f(a,b) l 2t it 
w' c ; G  

where 6b,0 ---- 1 -- 66,0 and 

(a- l'b) ) =(l + 6rs)l/z 2 b~ 21 

( (a- l,b) (1,0) (a,b) ) (s) 
x w [rs] w '  

+ars6b'0 2 b ~ (  (a- l'b)W (0,2)[rs] 
(a, b) \ (s) 

Wt / 

(60) 

1 if r<s, 
ars = 0 if r = s, (61) 

-1 if r>s. 
In view of these relationships, eq. (56) may be written in the following general 
form: 
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<ec~i;~j>= Z Ceo (62) 
e,Q=s,A W, [ 31 W[ [ijl WE ' 

where ,ks = (1,0), ,~a --- (0, 2), and [aft] and I/j] designate the appropriate two-box 
Weyl tableaux (see section 5 of Part II for details). The coefficients CeQ depend on 
all U(n), U(nl) and U(n2) irrep labels and orbital labels ij and aft. 

It is straightforward though laborious to work out the explicit form of the coeffi- 
cients C~,Q using the RMEs of table 1 and eqs. (57)-(60). There are nine possible 
choices for the irreps ,~] and A~ that are listed in the first and second columns of 
table 3, respectively. Formally, the sum in eq. (56) contains four terms. However, 
some of them vanish except in the case when b] = bl and b~ = b2. In four cases 
(when b] - bl = -t-2 and b~ - bE = +2), the sum in eq. (56) reduces to only one 
term, while in the remaining four cases, it contains two terms. Let us illustrate this 
on an example. When A] = (al, bl + 2) and ~ = (az, b2 - 2), all shifts a, r, p, r/ 
must equal 1 and eq. (56) becomes 

(e~i;~j) = (al,bl + 2 ) ( a 2 , b 2 - 2 )  E (al,bl + 1)(a2,b2- 1) 

( (al,b2 + 2) ~,~71* (al'b~) I 
x e 

x (al,bl + 1)(a2,b2- 1) E (al,bl)(a2,b2) 

I(a2'b2-2) C]~) (a2'b2)) (63) 
x w 2  " 

In view of eq. (57), the MEs of ~ t  ~ t  and C] (7) involve only antisymmetric 
terms, so that Css = Csa = CAs = 0 and Caa is given by the product of two genera- 
tor RMEs and of two coefficients (-aao/V~) and (-aij/x/2) arising from eq. (57), 
so that 

Caa = aa3a q 
1 [(b2 - bl + b - 2)(b2 - bl + b)(bl - b2 + b + 2)(bl - b2 + b + 4)] 1/2 

×8 [- ,] " (bl+l)(bl+2)(b2- 1)b2 

(64) 

In fact, we can prove that from among the coefficients Css, Csa, CAs and Caa, 
those corresponding to mixed symmetry, namely Csa and CAs, always vanish. This 
may be achieved by comparing MEs of eai;3j and e~j;~, or by a direct calculation 
using eq. (56). Thus, we finally get 
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W1 [a/31 W( W~ [z]] W2 , (65) 

with the coefficients Css and CAA for all possible cases given in table 3. It is worth 
noting that the Css term survives only in one case, namely when bl = b] and 
b2 = b'2. Finally, we recall that the CG coefficients of the symmetric and antisym- 
metric tensors are given by simple products of relevant isoscalar factors that were 
given in Part II (cf. eq. (II.52) and tables II.3 and 4). 

Similarly as in the third case, eq. (51), the operator characterizing case (4), eq. 
(52), also contains two U(nl) and two U(n2) labels but, in contrast to case (3), pre- 
serves the particle number in both subsystems. In view ofeq. (32), 

eoaj~ = ejo;~, = E C~EjOC~, (66) 
~7 

so that the MEs of  e~;j~ may be expressed in terms of  those for C~,  Ej~ and C 7. 
Exploiting eq. (8) for MEs of  Ej~, and eqs. (33) and (34) for those of  C ~  and C 7, 
respectively, we can write 

rr i ii (e~ij~)= ~ C t ~'~t E 
o~,., . , v~ v11'2 w~ v l  v11'2 11v2 

×view, n 

x 1112 Ct 11u2 /I2 W2 , (67) 

where the shifts T, 7/ and the intermediate irreps Vl, u2 satisfy the relationships 
vl = 1 1 -  T, u2 = 1 2 -  r/, and the shifts p and ~ are fixed by the conditions 
A1 - z + p = Vl + p = A] and 12 - r /+  ~ = u2 + ~ = 1~. Eliminating the sums over 
V1 and V2 then gives 

(e~i#B) = (hi r)A~ E 11(12 77) t t Ct - - 1112 (11 - r)A~ 

x 
11 12 11 (12 -- 77) W~ 

~t ~_.~ I 11 1~_ 
Wz 

(6s) 
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Table 3 
The coefficients Css and CAa in eq. (65) that depend on all bra and ket irreps of U(nt), U(n2) and 
U(n). The irrep of U(n) is fixed as (a, b) and the ket irreps of U(nm) and U(n2) are fixed as (at, bl ) and 
(a2, b2), respectively. Thus Css and Caa are given as functions of the bra irreps (all, ~ )  and (d2, b~) 
of U (n i) and U (n2), respectively. To avoid repetition we define Caa =- ~ aoBa U CAa and tabulate CAa, 
using the shorthand notation given below ~). 

(all, b]) (d 2, b'2) Css (TaA 

(al + 2, bi - 2) (a2, b2 - 2) 0 

(a2 -- 1, b2) 0 

{-2)1{0}4 
[0, 1;-1,0] 

~b "v~(-  1)~+a2+a+~ (0' O' 2' 2) 
2,0 [0, 1;0,2] 

(a 2 - 2, b2 + 2) 0 

(al + l ,bl)  (a2,b2 - 2) 0 

( a 2 -  1,b2) ( -  1)b2N~ 

(a2 - 2, b2 + 2) 0 t~b,,o 

{-2}2{2}s 
[0,1;2,3] 

V ~ ( -  1) a'+a2+a+l (0, 2, O, 2) 
6b,,o [0, 2; - 1, O] 

Ot~/~ 2(-1) + tobY, 2;b2 + 2bl + - 2b) 0 ' ' O, 2] 

x/~(-1)"'+a2+" (2, O, 2, 4) 
[0,2;2,3] 

(al, bl + 2) (a2, b2 - 2) 0 

(a2 -- 1, b2) 0 

{2}2{-2}3 
[1,2;--1,01 

X/~(--1)a'+a2+a+b2+l(2,2,0,4) 
662,0 [1,2;0,2] 

(a: - 2, b2 + 2) 0 {2)1{4)4 
[1,2;2,3] 

a) The following shorthand notation is used: 

= ½[(1 + +  ,j)l ' /2 , 

{m}l = [(hi + b2 - b +m)(bl  + b2 - b + m  + 2)] 1/2' 

{m}2 = [(hi - b2 + b + m)(bl - b2 + m + 2)] 1/2 , 

{m}3 = [(-bl + b2 + b + m)(-bl  + b2 + b + m + 2)] 1/2 , 

{m}4 = [(bl + b2 + b + m)(bl + b2 + b + m + 2)] 1/2 , 

(ml, m2, m3, t/am) = [(bl +b2-b+mO(b l  -b2 + b + m2)(-bl + b2 + b + m3)(bl + b2 + b + m4)] 1/2 , 

[ml, m2; m3, m4] = [(bl + ml) (bl + m2) (b2 + m3)(b2 + m4)]1/2 
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Equivalently, writing e~ij~ as y]~ ~jE~iC~, we find that also 

(e~ij~>= A](AI _ r7 ) (A] - r)A2 A]AI Ct A](AI - r/) 

- 7-) 2 w l  w 2  ' 

(68') 

where p = A1 - At1 + 7- and ~ = A2 - A~ + 77. Again, although there are 8 terms on 
the right-hand side ofeq. (68) or (68'), in most cases at least half of them vanish. For 
example, when A~I = ( a l -  1,bl +2)  and A~ = ( a 2 -  1,b2 +2) ,  we have that 
cr = 2, p = 1 and 77 = 2, ~ = 1, so that only two terms (7- = 1 and 2) survive. Only 
when A] = (al, bl) = A1 and A~ = (a2, b2) = A2, all 8 terms must be considered. 

Through eq. (68), the MEs of two-body operators are reduced to MEs of U(nl) 
and U(n2) adjoint tensors. We showed in Part II that any adjoint tensor can be con- 
structed from a corresponding generator E and operators N, whose MEs are given 
by simple products of segment values. The relationship between the C t C operators 
and E and N adjoint tensors on a given U(n) irrep module (a, b) is given as (cf., 
eqs. (II.73a-d)) 

c ltc1 _ b 1 /b(b + 2)N(O ) 
-~ 2(b + 1~ Ers + f f - ~  V 2 r~ , (69) 

Cr Cs 2 (b+  1 - - ~ - )  E~ b +  1 

b + 2  + 
c l t c  2 = ~ b ~ 3 N ! ;  ) - - r  v s  (71) 

c~Zt C1 = V / b ~ l  N~7 ) (72) 

Using these relations, eqs. (69)-(72), and tables 1 and 2 for the RMEs appearing 
in eq. (68), we can express eq. (68) in the form 

~ec~i;J~)= Z CpQ "~1 e ~  , (73) 
W1 W2 

where the coefficients CpQ depend on all the irreps involved. We find again that 
the mixed terms CEN and CuE always vanish. We can thus write 
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(eai~il3) -~CEE W( Eaa Wl W~ Eji W2 

( ( a ' l '  b]) I I(al 'bl))((12' f f2)l  ~' (a2'b2) / (74) 
w :  ' 

wher e  the  ac tua l  shifts  ~ and  ~' for  N[~, ~' = (+) ,  (0), ( - ) ]  are  un ique ly  d e t e r m i n e d  
by the  i r reps  A], ,~1 a n d  ~'2, ~2, respect ively ,  a n d  m a y  thus  be omi t t ed .  T h e  explici t  
f o r m  o f  the  coeff ic ients  CEe a n d  CNu for  n ine  poss ib le  cases is g iven  in table  4, 
t o g e t h e r  w i th  the  c o r r e s p o n d i n g  shifts  ~ a n d  ~;'. W e  no t e  t ha t  aga in  the  Cee t e r m  
survives  only  for  the  f if th case w h e n  ~'1 = )q a n d  A~ = ,~2. As  s h o w n  in P a r t  II,  the  

Table 4 
The coefficients CEr and CNu and shifts ~, ~' in eq. (74) that depend on all bra and ket irreps of 
U(nl), W(n2) and U(n). The irrep of U(n) is fixed as (a,b) and the ket irreps of U(nl) and U(n2) are 
fixed as (al, bl) and (a2, b2), respectively. Thus CBe and CNN are given as functions of the bra irreps 
(all, b]) and (a'2, b~) of U(nl) and U(n2), respectively. The same shorthand notation as in table 3 is 
used. 

b' ~/ (~,/¢1) (a~, 2) C~ 4CNN a) 

(al + 1,bl - 2) (a2 + 1,b2 - 2) 0 (--1)b~+1{--2}1{0}4 (--) (--) 
[0, 1; 0, 1] 

x/-2(-1) a' +a2+a+l (0, 0, 2, 2) 
(a2, b2) 0 [0, 1; O, 2] (-)  (0) 

(-l)tn+l {-2}2{2}3 
(a2 - 1,bE +2) 0 [0,1;2,3] (-)  (+) 

x/2(- 1)a~+az+a+h (0, 2, O, 2) 
(al, bl) (a2 + 1, b2 - 2) 0 [0, 2; 0, 1] (0) (-)  

1 2(bl 2 + ~ - b2 + 2bl + 2b2 - 2b) 
[0, 2; 0, 2] 

x/2(-1) a' +~2+a+/~+' (2, 0, 2, 4) 

(32,b2) - i  (0) (0) 

(a2 - 1, b2 + 2) 0 [0, 2; 2, 3] (0) (+) 

(at - 1,bl + 2) (a2 + 1,b2 - 2) 0 (--1)b~+1{2}2{--2}3 (+) (--) 
[2, 3; O, 1] 

X/2(-1)a~+32+a(2,2,0,4) 
(a2, b2) 0 [2, 3; O, 2] (+) (0) 

(-1)~+1{2}1{4}4 (+) (+) 
(a2 - 1, b2 + 2) 0 [2, 3; 2, 31 

") To avoid special cases we assume that QvN = 0 if the numerator vanishes. 
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MEs of E and N operators are given by simple products of corresponding segment 
values (cf., eq. (11.34) and tables II. 1,2 as well as eq. (11.72) and tables II. 1, 5-7). 

The similarity between the coefficients appearing in eqs. (62) and (73) is worth 
pointing out. In both cases, the mixed terms always vanish and the Css and CeE 
coefficients survive only when the spins of U(nl) and U(n2) irreps are preserved 
(i.e., when b~ --- bl and b~_ = b2). Moreover, both CAA and CNN coefficients (cf. 
tables 3 and 4) have the same numerators except for a phase factor and Kronecker 
delta symbols. This similitude arises due to an analogous shift behavior between 
the generators and symmetric tensors on the one hand and between the N operators 
and antisymmetric tensors on the other hand. Indeed, both generators and sym- 
metric tensors possess only one shift component that preserves spin (or the b value), 
while both N operators and antisymmetric tensors have three shift components, 
inducing a spin shift of 1, 0 and - 1 (or, correspondingly, a change in b by 2, 0 and 
-2 ,  respectively). 

6. Discussion and conclusions 

In the preceding sections we applied the unitary group tensor operator algebra 
formalism, developed in Parts I and II of this series, to the U(n) ~ U(nl) × U(na) 
partitioned bases. Our results indicate that the evaluation of one- and two-body 
MEs in partitioned bases may be carried out in very much the same way as for the 
standard GT bases, relying on their factorization involving segment values. All the 
additional quantities that are required for partitioned bases are listed in tables 1- 
4. Similarly as for the standard bases, their values depend on the intermediate spin 
quantum numbers at a given level (b values), although the phase factor may now 
also depend on double occupancies (a values). For the generator (or one-body) 
MEs, eq. (8), we require generator RMEs that basically represent Racah coeffi- 
cients (table 1) as well as CG coefficients associated with standard U(nl) and U(n2) 
GT bases that are given by simple products of scaled isoscalar factors for vector 
operators as shown in Part II. For two-body operator MEs, we have to distinguish 
four new types, eqs. (49)-(52), involving intershell (or intergroup) operators. In 
general, these are given by the sum involving two terms, each of which is a simple 
product of segment values (cf. eqs. (53), (54), (65) and (74) corresponding to types 
1-4, eqs. (49)- (52), respectively). These two terms represent either symmetric and 
antisymmetric tensors, or adjoint tensors expressed in terms of a generator and N 
operators. For the first two cases, eqs. (53) and (54), we have to evaluate a simple 
product for one of the subgroups and the above-mentioned sum involving two 
terms for the other subgroup. In the remaining two cases, eqs. (65) and (74), each 
term is a product of U(nl) and U(n2) MEs. Except for the top level segment values 
which are listed in tables 1, 3 and 4, the segment values for all other levels are identi- 
cal with those required for standard GT bases and tabulated in Part II. 

All the developments presented in this paper are based on the U(n) tensor opera- 
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tor techniques that were developed in Parts I and II of this series. Our primary 
objective was to interrelate the MEs of U(n) generators in a partitioned basis with 
those for the standard U(n0 and U(n2) bases. We have seen that in fact we only 
need a few additional quantities in addition to those already established earlier for 
the canonical GT bases (cf. Part II). The development of the required formalism 
was made easy thanks to the introduction of the creation and annihilation-type vec- 
tor operators at the orbital U(n) level in Part II. In fact, these operators represent 
basic building blocks in terms of which we can express all the desired operators, 
similarly as in the standard second quantization formalism. Of course, in view of 
more intricate symmetry properties of these orbital creation and annihilation 
operators (in contrast to creation and annihilation operators of the second quanti- 
zation formalism that transform according to the totally antisymmetric, single-col- 
umn irreps), an appropriate recoupling must be carried out when these operators 
are combined and when evaluating MEs in partitioned bases. Although the actual 
derivations, particularly for two-body operators, may be quite laborious, the final 
results are just as simple as for standard GT bases. In fact, only a few additional 
segment values, represented by generator and vector operator RMEs (tables 1 and 
2) are required. 

Similarly as in the case of standard GT bases, our tensor operator formalism clo- 
sely parallels that based on Green-Gould representation theory [28,29] that was 
employed in ref. [27]. Our generator RMEs are essentially those used in ref. [27a] 
and, likewise, our vector operator RMEs parallel the reduced Wigner coefficients 
of ref. [27a]. Note, however, that while only one-body MEs were considered earlier 
[27], this work provides complete results for both one- and two-body operators. 
As we already announced in Part II, we shall provide a more detailed comparison 
of both approaches in one of the future installments of this series [34]. 

Let us finally point out that the results of this paper, where we restricted our- 
selves to a system partitioning involving two subsystems, may be generalized to 
composite bases involving more than two subgroups. Regardless of how compli- 
cated is the partitioned basis employed, we can always express the MEs of one- and 
two-body operators in terms of MEs of their building blocks, namely the C t and 
C-type operators, which may be suitably recoupled within each subgroup. The 
final result will thus always be given in terms of rank one (Ct, C) and rank two 
(S, A, E, N) tensors, whose MEs were given in Part II. For operators whose orbital 
labels belong to two distinct subgroups, all necessary coupling coefficients were 
essentially derived in this paper. For operators containing orbital labels associated 
with three distinct subgroups, certain additional coefficients will have to be 
worked out. Since the most general two-body operator involves at most four orbi- 
tal labels, the most complicated case will involve four distinct subgroups. However, 
we must keep in mind, that this is a purely formal analysis of the partitioning pro- 
blem. Obviously, the main usefulness of system partitioning stems from the fact 
that numerous two-body terms, particularly those associated with a multi-electron 
charge transfer between weakly interacting subsystems, may be safely neglected. 



352 X. Li, J. Paldus / Unitary group tensor algebras. I I I  

It is thus important to consider the partitioning problem in an actual physical or 
chemical context, where it will lead to substantial simplifications resulting in 
reduced computational requirements. We will examine this aspect in the future 
when applying the formalism to actual systems. 
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Appendix  

In order to derive the Racah coefficients appearing in eqs. (17) and (23), we 
apply the results of Part I, in particular eq. (I. 141), which expresses an important 
relationship between the Racah coefficients and U(n) ~ U(n - 1) isoscalar factors 
(referred to as I,, factors for short). Let us choose the irreps in eq. (1.141) as fol- 

A1 = (O, b 2 -  1), 

A12 = (O, b2), 

#1 =(O, b 2 -  2), 

lows: 

A2 = (0,1), 

A23 = (al,bl + 1), 

]Z23 = (al, bl + 1), 

A3 = (al ,bl) ,  

A = ( h , b ) ,  

# =  ( h -  1 , b + l ) .  

(A.1) 

First, we notice that all multiplicity labels are unnecessary in this case. Second, 
the choice of #23 = A23 implies that/~2 = A2 and #3 = A3, since when we do not 
remove any box from A23, we cannot remove any box from A2 and A3 either. Third, 
there is only one possibility for #12, namely #12 = (0 ,b2 -  1). Since the irrep 
A = (h, b) is obtained by adding bE boxes of A12 = (0, bE) to A3 = (al, bl), we have 
that 

h=al+k, b=bl+b2-2k, (A.2) 

for some k. Substituting thus these values into eq. (I. 141) we get 

U{(O, b2 - 1), (0, 1), (~, b), (al, bl); (0, b2), (al,bl + 1)} 

( (O, b2- l) (al,bl + l) (?l,b) ) 
xI~ (O, bE 2) ( a l , b l + l )  ( & - l , b + l )  

= U{(0, b2 - 2), (0, 1), ( h -  1,b + 1 ) , ( a l , b l ) ; (0 ,b2 -  1),(al,bl + 1)} 

(O, b 2 -  1) (0,1) (O, b2) 

×Iu (O, b2 2) (0,1)(O, b2-1),]  
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( (O, b2) (al,bl) (a,b) ) (A.3) 
xlu (0, b 2 - 1 )  (al,bl) ( h - l , b + l )  ' 

where the last isoscalar factor on the right-hand side of  eq. (I. 141), being equal to 
1, was dropped. Using table 1.2 for the above Iu factors and eq. (A.2), we obtain the 
following recursion formula for Racah coefficients: 

U{(0, b2 - 1), (0, 1), (a: + k, bl + bE - 2k), (al, b:); (0, b2), (al, bl + 1)} 

[ ( b 2 - 1 ) ( b , - k  + 1).] '/2 

A 

× U{(0, b2-2) ,  (0, 1), ( a l + k - l , b :  + b2 - 2 k + l ) ,  (al ,bl) ;  (0 ,b2-1) ,  (a:, b l + l ) } .  

(A.4) 
Using the orthogonali ty of  Racah coefficients, we can prove that  when 
(~, b) = (a:, bl + b2), or k = 0, the Racah coefficients in eq. (A.4) equal 1, i.e. 

U((0,b2 - 1), (0, 1), (a: ,bl- t-b2),(al ,bl) ;(O,[~2),(al ,bl  + 1)) = 1, 0 ( i . 5 )  

for any/~2 >I 1. Indeed, eq. (I. 133b) implies that  

~ U { ( O ,  b2-1) , (O,  1 ) , (a l ,b l+b2) , (a l ,b l ) ;A12 , (a l ,b l+l ) }2=l ,  ( i . 6 )  
AI2 

where A12 results from the coupling of  (0,b2 - 1) and (0, 1) and thus can only be 
equal to (0, b2~ or (1,/~2- 2). However, coupling (al, bl) with (1, b 2 -  2) cannot  
yield (al, bl + b2), so that  only A12 = (0, bE) is possible, implying eq. (A.5). We then 
iterate cq. (A_.4) k-times until wc reach U with A = (al, bl + bE -- k), so that  apply- 
ing (A. 5) for b = b2 - k we get 

U{(0, b2 - 1), (0, 1), (al  +k,  bl +b2 - 2k), (a:, bl); (0, bE), (al,bl + 1)} 

= ( - l ) k [  (b2 -k ) (b l  - k  1)tl/2" (A.7) 

Since al + k = a and bl + bE - 2k = b, eq. (A.2), this relationship yields immedi- 
ately eq. (17). 

To derive the Racah coefficient arising in eq. (23), we choose the irreps in eq. 
(I. 141) as follows: 

Al = (0 ,b2-  1), 

)~12 = (0,b2), 

A2 = (0, 1), 
A23 = (al + 1,bl - 1), 

~1 ---:(0, b2 - 2), ~23=(a~q-l ,b l  - 1), 

where k =  ( b - b :  q-b2)/2. This choice 
~12 = (0 ,  b2 - 1). We thus get 

-- (a:,  b l ) ,  

= b)  

= (al + b2 - k, bl - b2 + 2k), 
i t =  ( a , b -  1) 

= (al + b2 - k, bl - b2 + 2k - 1), 
(A.8) 

implies that  ~2 = A2,/ca ---~ )~3, and 
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U{(0, b2 - 1),(O, 1),(h,b),(al,bl);(O, b2),(al + 1,bl-  1)} 

_((O'b2-1) (al + 1 ,bl-  1) (h,b) 
×I"\(0,b2 2) (al+l,b~-l)(h,o-1)J 
= U{(0, b 2 -  2), (0, 1 ) , ( h , b -  1) ,(al ,bl) ;  (0, b E -  1),(al + 1,bl - 1)} 

× 
\ ( 0 ' b 2 - 2 )  (0,1) (O, b E - 1 )  (O, b 2 - 1 )  (a l ,b l )  ( h , b - 1 )  ' 

(A.9) 
b) is defined by eq. (A.8). Substituting the Iu factors from table where the irrep (~, 

1.2, we obtain another  recursion formula 

U{(0,b2 - 1),(O, 1),(d,b'),(al,bl);(O, b2),(al + 1 , b l -  1)} 

= [(bE-1)(bl + k +  l)] +k) 

× U{(0, b 2 -  2),(0, 1 ) , ( d , b ' -  1) , (al ,bl) ;  ( 0 , 6 2 -  1), (al + 1,61 - 1)}, 

where a' = aa + b2 - k, b I = bl - b2 + 2k. From eq. (I. 133a) we find that  

Z U{ (0, b2 - 1), (0, 1), (al +/~2, 61 - b2), (al, 61); (0,/~2), )~23 }2 = 1, 
A23 

(A.10) 

(A.11) 

where )~23 c a n  equal_(al + 1,bl - 1) or (al,bl + 1). However, only the first one 
yields (al +/~2, bl - b 2 )  when coupled with (0,/~2- 1). Thus (choosing positive 
phase factor) 

U{(0,/~2 - 1), (0, 1), (al +/~2, bl -/~2), (al, bl); (0,/~2), (al + 1, bl - 1)} -- 1, 

(A.I2) 
for any/~2~> 1. Using this fact for/~2 = b2 - k and iterating eq. (A.10) k-times, we 
obtain the desired relationship: 

U{(O, b2- l),(O, 1),(h,b),(ax,bl);(O, b2),(al + 1,61- 1)} 

(A.13) 
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